
JOURNAL 01~ COMF’UTAlTONAL PHYSICS 4, 171-i!# 0969)

Computer Algorithms for

STANLEY M. SWANSON

Institute of Theoretical Physics,
Department of Physics, Stanford University, Stanford, California 94335

Received September 30; 1968

ABSTRACT

We present a collection of algorithms written in ALGOL 60 to illustrate the manipula-
tion techniques used in machine language programs designed for symbolic evaluation
of algebraic expressions. Such algorithms have been used by theoretical physicists in
quantum electrodynamics calculations. A subset of these methods is usefttl in the
reduction of complicated perturbation expansions which involve only ordinary
(commutative) algebra. It is hoped that this will provide a more understandable and
accessible archive for these methods than scattered listings of assembly code for specific
computers. We consider the input and distribution of arbitrarily parenthesized algebraic
expressions, Chisholm’s reduction of the product of traces with intercontracted indices
to single traces, the removal of contracted indices in single traces to produce simple
traces which are then reduced to invariant dot products (and determinants if ~5)s are
present). Several storage schemes are discussed.

The calculation of traces arising from perturbation theory expansions sn q~a~~~rn
electrodynamics involves repetitive applications of a few simple rules.
cated calculations, such tedium is best relegated to a digital corn~~tcr which Is
less apt to make manipulative mistakes than a theoretical physicist, Likewise, a
theoretician’s desire to expand an algebraic expression to the first few orders in a
small quantity can require a prohibitive amount of bookkeeping. There is consider-
able prior art in this field [l-S] and there will undoubtedly be subsequent effort due
to vagaries in the dissemination of techniques, the differences between c~rn~~te~s
on which such programs are implemented, and the greater capab~~~~~es of more
modern machines.

1 Research sponsored in part by the Air Force Office of Scientific Research, BEice of A~rosp~.ce
Research, U.S. Air Force, under Contract F 44620-68-C-0075.

* This work is part of the author’s Ph.D. Thesis, Stanford University, May, 1968.

171

172 SWANSON

There are two extremes in the implementation of algebraic manipulations on
computers: machine language programs written to do specific tasks at maximum
efficiency and maximum modification effort, and programs written in higher level
languages more or less suited to list manipulation. The latter type is easy to modify,
but usually sacrifices some efficiency. The machine language techniques, with which
we shall be concerned, take advantage of the idiosyncracies of specific computers,
but generally hide their basic algorithms in a mass of detail. I shall try to illustrate
the methods in the ALGOL 60 language [9], without optimizing the program for
the Burroughs B 5500 on which it was tested, so that the ideas of internal represen-
tation, sorting on identifying bit patterns, and various permutation schemes are
more accessible than they would be through reading assembly code listings. In
this type of programming, one defines the meaning of bit patterns within words and
of groups of words through the operations performed upon them, in contrast to
the case of numerical computation where registers and memory locations can be
treated logically as numbers, relying on hardware to interpret the bit patterns
within them.

Although the input (and occasionally the output) of algebra programs is fairly
innocuous, the intermediate manipulations generate a morass of terms which
combine and cancel in various ways. The efficient utilization of rapid access storage
for these intermediate manipulations will be less of a problem for the current
generation of computers (with ca. 10’ bits of immediate storage) than it was on

Input is scanned to find an expression bounded by addition operators
at parenthesis level zero.

Each expression is distributed to produce monomial terms.

Commuting factors are extracted from the monomial, leaving an
ordered list of the noncommuting factors.

Products of traces with intercontracted indices are reduced to single
traces by tr(r,S) tr(y,S’) = 2 tr((S + R) S’).
Contracted indices are removed from simple traces:
... YUSYU . . . = .-Z(...R...), *** Y,Sbfi . ..= 2((...bS...)+(...Rb...)).

An odd ys calls for the production of determinants.

any remaining vector quantities are reduced to dot products by
tr@l .a. aJ = a, . az tr(a3 *.* a=) - *.* + aI * a, tr(a, *a- a&.

Sort invariants and commuting factors into canonical order and
combine coefficient with pre-existing term or store new term.

FIG. 1. Synopsis of the trace reduction scheme. Names in the boxes are of procedures which
will be discussed subsequently. The symbol S or s’ denotes the product of an odd number of
gamma matrices: S = ala2 *.. a,, where n is odd; and R denotes a product with the same factors
as S, but written in reversed order: R = a, .a. a,a, .

ALGORITHMS FOR DIRAC ALGEBRA 173

computers such as the IBM 7090 (with only 10” bits available). Concern will s
to the major problem of reducing and comprehending the ~~rnpli~a~e~ expressi
generated as output from calculations. The ALGOL program to be discussed here
has adopted the philosophy of its predecessor FTRACE, an ass
program for the IBM 7090: to reduce pieces of an expression to
invariants before wholesale storage is attempted. This is ~~~orn~lis~e~ by nested
procedure calls corresponding to a hierarchy of reduction steps in rat trace
algebra. An overview of the main procedures and of this reduction sch e is given
in Figure 1.

We will now focus on the details of the algorithms, ~~~sideri~g in turn
and distribution of algebraic expressions to produce rno~o~a~ terms, the
of traces with contracted indices to simple traces, the production of inva

roduets and determinants) from simple traces, and the storage an
the output expression.

INPUT AND DISTRIBUTION OF E~R~sSnons

Input and output depend ultimately on a hardware representative of characters
and rely on machine language coding tied to
print symbols and bit sequences. Moreover, sophis~cated algebra programs gener-
ally recognize control words which distinguish between various types of tas
such as evaluation of expressions, performing substitutions, and
sorting priorities. The recognition of multiple character symbols, task as~~~~rn~~ts,
and elaborate error detection and correction are problems wbicb will
the reader. We will treat the input of algebraic expressions in a somewhat
manner and then move on to their evaluation, i~trodu~i~~ ~e~~~~q~es

lied to other problems, such as substitutions.
presentation of the algorithms will deviate slightly from the AL
6e language [9]. Logical operators will be spelled

introduce an additional integer arithmetic oper
~erna~~~~~ in division (A mod B = A - B x (A +
stand for integer values derived from the value assigned by the input routine g=%lfi”i,R
to single input characters. CHAR is defined in terms of the standard [I
rot&he ~~sy~b~~~

e CHAR;

A : insymbol
(l,“x)+- (.0123456789 u#ABCDE~GHIJK~MNQ~

if Z = 0 m Z = ‘IJ’ then go to A; CHAR := abs(Z);
end CHAR:

174 SWANSON

Here insymbol interrogates external channel 1 for the next input character and
assigns to 2 an integer value corresponding to the position of the input character
in the string ‘x) + ..- Z;’ or sets 2 to zero if the character does not appear in the
string. (The order of the symbols in this string has been chosen to aid in the syntac-
tical analysis of the input by the procedure SCAN, to be discussed next.) Thus
CHAR ignores spaces (u) and characters not appearing in the reference string; it
gives the value 1 for a multiplication sign, 5 for a left parenthesis, 19 for the
letter ‘A’, and SO on. In the ALGOL, single character proper strings assume values
corresponding to these assignments (e.g., the expression 3 x ‘)’ + ‘2 equals 1.5)
and n-character proper strings form n-digit numbers of radix 64 (e.g., ‘ABC’ =
64 x (64 x ‘A’ + ‘B’) + ‘C’ = 79125).

Another matter to be dealt with is the definition of nonlocal variables, A number
of arrays and simple variables used in common by several procedures have been
defined in the outside program block, nonlocally to the respective procedure blocks.
This was partly a matter of efficiency and necessity under the ALGOL compiler
on the B 5500 [ll]. In a more involved program which uses procedures like
DISTRIBUTE in several contexts, it might be desirable to treat these nonlocal
variables and called procedures as formal parameters. The program block head
starts

begin comment program block;
integer array V, VL,OPL[O:lOO], INDEX,CNUM[O:30], LIM[O:l,O:lO];
array QNUM[O:30]; real array CO[O:lOO]; Boolean array MULT[O:lOO];

The upperbounds on these arrays set size limitations on expressions the program can
handle. Since provision for real coefficients was something of an afterthought, a
warning about the types of some of the arrays is in order. The convenience of real
coefficients comes in the algebraic evaluation of series and in substitution for inva-
riants, rather than in taking traces where the numerical operations are limited to
change of sign, multiplication by small integers and combining terms. To facilitate
transfer of information to scratch arrays, both a coefficient (possibly real) in
QNUM [0] and symbolic information about noncommuting invariants (which is
intrinsically integer or logical) in QNUM [l : n] has been carried in the same array.
Similarly both numeric and symbolic information is carried in the mass storage
array TERM (to be declared later); such mixed mode arrays will be declared
without specifying their type. A compiler’s propensity to transfer types in arithmetic
and assignment operations, which might lead to truncation errors, would be
circumvented in machine language coding. To stay within the confines of a compiled
program, such arrays should be replaced by variables or arrays of the two appro-
priate types and additional assignment statements added.

Algebraic expressions acceptable as input to this program are similar in generality
and form to those familiar in ALGOL or FORTRAN. Arbitrary nesting of paren-

ALGORITHMS FOR DIRAC AL 175

theses is permissible, but division and exponentiation are absent.
integer exponents would be a desirable and minor rnQdi~~ati~~.
cation is permitted, allowing one to omit the multiplication sign
such omission is not ambiguous. Symbolic variables have been e
the ~o~commuting quantities of Dirac matrix algebra and a trace
separate intercontracted traces. In this version, only a single characte
symbolic variable (ignoring for the moment, the prefix ‘;Y, on ~o~c~rnrn~t~~g
variables); efficient extension to multiple character identifiers enmeshes
idiosyncrasies of specific computers and would modify the meaning
m~lt~p~i~ation in some expressions.

Input syntax will be specified from two approaches: first a set of recursive
definitions similar to those used in the ALGOL report [e>], then by a %ansi-
tionp’ matrix between syntactical entities which will lea
routine SCAN. Starting with (letter} (uppercase) an
(a sequence of digits, possibly containing one decimal

el the ALGOL definition of an (arithmetic) (exp
definitions:

(adding operator) : := + /--
(mubiplying operator} : : = x /(empty (except the case (number) x (rmmber>j>

ing variable) : := (letter)
(vector . r) : := #{letter)
<rJto be contracted)> : := #(digit f 5)
(y5) : := #5
(trace operator) : := ##
(variable) : := (commuting variable) 1 (vector . r> / (y,) / (y5) ! (trace operator)
{primary} : := (variable)l(decimal number)/((expression>)
(term} : := (primary)/(term)(multiplying operator)(primary)
{expression) : := (term)](adding operator)(term>/(expression)

(adding operator)(term>

Not all valid expressions make sense as traces, since some care must be exercised
in the use of (7,) and (trace operator); restrictions on their use will be dismissed
in the section on trace reduction. We have arbitrarily decreed that certain digits
following ‘#’ represent indices on gamma matrices which will be s~bs~q~e~t~~
contracted; a more elaborate input routine could allow the definition of certain
identifiers to stand for such indices. One could also assign integers ts represent
various external print names of identifiers, rather than simply using the integer
assigned to a symbol by CHAR; the usefulness of this refinement will
apparent later when sorting and storage schemes are discussed.

176 SWANSON

The structure implicit in the above definitions can be summarized by a matrix
showing which syntactical entities may follow others: the symbols ‘ x ‘, ‘)‘, ‘+‘, ‘--‘,
and ‘(I stand for themselves, while the letters are abbreviations: N = decimal
number; V = variable; A = allowed juxta-position; E = error; I = implicit
multiplication, ‘ x ’ is supplied; S = an initial sign on an expression.

following entity
x)+---NV

preceding entity x E E E E A A A
>AAAAIII
$EEEEAAA

E E E E A A A
(EESSAAA
N A A A A I E I
V A A A A I I I

The logic of the input procedure SCAN closely follows this matrix, as it translates
an expression into an alternating sequence of operands (variables or numbers) and
operators (adding or multiplying) with their associated parenthesis level. The
parenthesis level of a variable or operator is defined to be the number of left
parentheses minus the number of right parentheses which have preceded it in the
expression. An expression breaks naturally into subexpressions separated by
adding operators at parenthesis level zero; when one such subexpression has been
translated, it is distributed and reduced to invariants before proceeding to the
next subexpression. Scanning is terminated by a ‘;’ at the end of an expression or
by an error.

procedure SCAN;
begin integer LVL, N, S, T, U, VAR; real C, D, R;

procedure TIMES;
begin MULT[N] := true; OPL[N] : = LVL; N : = Nf 1; end TIMES;
procedure NUMBER; begin C : = 0; D := 1;
W: if ‘0’ < U and U < ‘9’ then

begin C := lOxC+U-7; D := 1OxD; U := CHAR; go to Wend;
end NUMBER;

LVL := N := T := 0; U := CHAR;
comment break syntax into entities: x)-t-(number variable;
A: S := T; T := U;
if ‘.’ < T and T < ‘9’ then begin NUMBER; R := C; VAR := 0;

K U = ‘.’ then U := CHAR; NUMBER; R := R-j-C/D;
ifs = ‘-’ then R := -R; if U = ‘.’ then go to ERR end else

ALGORITHMS FOR DIRAC ~GE~~~ 177

T= ‘;, egin T := ‘+‘; LVL := 0 w

se begin < T then if T = ‘#, then VAR := -CffA
t’ := CHAR end;

U > ‘() then TIME§ else

egio LVL := LVL-1; if LVL
if U 3 ‘(, then TIMES

n begin if U 3 ‘(, then begin
S # 0 then begin MULT[N] : = false; OP
0 then begin DISTRIBUTE(N); N := 0 en

and U > ‘9’ then
V[N] := 0; VL[NJ := LVL; CQpq := -1;

se go to ERR end else

T = ‘(, then begin if U 3 ‘+’ then LVL := KVL+f else go to ERR e~p

en begin if T < ‘9’ then CQ[N] := R.
; VL[N] := LVL; if U 2 ‘,, the

‘5’ tbea go to B else go to A;

: outstring (2, ‘SYNTAX ERROR’);

There are two anomalies in SCAW: a sohtary decimal point will be treated as the
number zero and any symbol may appear after ‘#‘. Note that there are essentiahy
only two operators (’ x ’ and ‘+‘) since a minus sign is absorbed into a fo~~o~~~~
rmmber or treated as the sequence ‘- 1 x ‘.

The distribution algorithm was originally devised by Kaiser [3] and re~o~str~~t~~
vine [5, 12]. DISTRIBUTE uses the parenthesis level information in VL and
and the identification of operators as muitiplicative or additive in MULT to

produce a Iist in INDEX of the operands in V which corre ond to a single mono-
mial. ribution is from left to right (initial factors in m
frequ) rather than the more customary right to left.
array U2XD marks the terms within an expression whit
previous monomial; thus each factor in the current monomial is the first unused
operand within a set of operands joined by additive operators. At the beg~~~i~¶g of
the ~~~~~nl~~ation of factors for a monomial (MORE false), the first selected operand
foollowed by an additive operator is marked used and the marks on the operands to
the may be changed to indicate the factors of the next rno~~rn~a~~ a r this
@f now true), the index I is merely stepped over operands in an ditive
relation to the current factor. It is difficult to be verbally precise because “ter
and “expression” are defined recursively; one must understand the AL@

178 SWANSON

procedure DISTRIBUTE (N); value N; iateger N;
begin integer I, J, K, L, LEVEL;

Boolean MORE, PRODUCT, TERM; Boolean array USED[O:N];
for K := 0 step 1 until N do USED[K] := false;

NEXT: MORE := false; J:= I:= -1;
FACTOR: I := I+ 1; if USED[I] then go to FACTOR;

J := J+l; INDEX[J] := I;
SKIP: if MULTII] then go to FACTOR; LEVEL := OPL[I];

if LEVEL > 0 then begin
if MORE then begin

R: I := I+l; if LEVEL < OPL[I] then go to R end
else begin L := LEVEL; LEVEL := VL[I] + 1;

USED[T] := PRODUCT := TERM := MORE := true;
for K := I-1 step -1 until 0 do begin

if OPL[K] < LEVEL then begin
LEVEL : = OPL[K]; PRODUCT: = MULT[K];
if LEVEL ,(L then TERM := false end;

if PRODUCT then USED[K] := TERM end end;
go to SKIP end;

PROCESS(J); if MORE then go to NEXC end DISTRIBUTE;

Each monomial is separated into a numerical coefficient and sequences of
commuting and noncommuting factors by PROCESS. We first give a simpler
procedure SERIES, which when substituted for PROCESS will evaluate the coeffi-
cients of a power series in a single variable up to the power MAX (nonlocal). TheL
real array A[0 : MAX] must be defined nonlocally and zeroed before evaluating a
series.
procedure SERIES (N); integer N;
begin integer I, J, 2; real R; Z := 0; R := 1.0;

for J := 0 step 1 until N do begin I := INDEX[J];
if V[Tj = 0 then R := RX CO]I] else Z := Z+l end;

if 2 < MAX then A[Z] := A[Z]+ R; end SERIES;

The job of PROCESS is more complicated because nonnumeric operands of
various types must be distinguished and accumulated. In these illustrative
algorithms, the nature of the trace remaining is checked at each level of the nested
sequence of procedure calls; it would be more efficient to determine the starting
level of trace expansion and the presence of y5’s in PROCESS. If extension to
complex arithmetic is desired, this is also the place to recognize and count the
occurrences of some reserved symbol (perhaps ‘I’) for 2/T. Additional provision
must be made here and in CHISHOLM if (y$’ f 1. The coefficient R is initialized

ALGORITHMS FOR DIRAC ALGEBRA 179

to 4 because we assume that every term involves a trace, if only
unit matrix.
procedure PROCESS(N); value N; integer N;

egin i~~e~~~ I, Z, K, KQ, M’, VAR, C; real R; ~~~~ea
RI==4 :=K:z,J:= c:=Q; CNUM[30] :=
65 := := false; EYEN := true;

J:= J+l; CNUM[J] := 44~64x(64x”u’+VA
VAR := --AR;

R = “5’ tbeu G5 := uot G5 else
if~~R#‘#‘thenlbeginK:=K+3;

NU.M(K] : = - VAR else QNUM[K] : = VA

or A4 = N thea begin
R := -R; ODD := fake;
gin K := K+l; QNUM[K] := 5; Kcd :=

EVEN : = (K-KO) mod 2 = 0 and (not G5 or (K-K@ 3 4);
65 := false;

MfArtbenbeginKO:=K;LI~[I,C]:=K;C:
LlM[O,C] : = K+ 1

end end;
f 0 then begin QNUM[O] := R; LM[l, ~NU~~O~ :== J;
GMU(K) else CHISHQLM(K,C); eand; e CESS;

Our result at this stage is a single monomial described by a coefhcient in
QNUM[O], a list of commuting factors in CWUM[l :JJ, and a sequence of non633
muting factors in QiVUM(1 X]. If there are several (C> traces with interco
indices, their respective extents in QNUM are delimited by ~~M~~:~, 1 :G].
proceed to the reduction of the trace or traces in QNUM to invariants; the reader
who is interested only in ordinary algebra may skip to the section on stor
output.

TRACE REDUCTION

In quantum electrodynamics, pairs of gamma matrices whose indices are son-
tracted arise in the calculation of processes which have photon vertices in their

180 SWANSON

Feynman diagrams. If there is more than one distinct fermion line in a diagram, at
least some of the terms in the square of the matrix element will have the form of
products of traces with the individual gamma matrices of the contracted pair
occuring in separate traces (e.g., tr(... yy ...) tr(*.. yU 1.. yV ...) tr(..* yU e..)), a
situation I call “traces with intercontracted indices.” Such products may be reduced
to sums of single traces by successive applications of a formula due to
Chisholm [13].

Let S and S’ denote products of an odd number of gamma matrices, for example,
S = ala, -*- a,, where p1 is odd and ai is the four-vector inner product a, . y. A
product with the same factors as S but written in reversed order will be denoted by
R = a, a-. a,a, . The reduction formula for the product of two traces is

tr(y,S) tr(y,S’) = 2 tr((S + R) S’).

Successive applications of this formula, with appropriate rotations (cyclic permuta-
tions) of individual traces, suffice to reduce the product of several traces with
intercontracted indices to a sum of single traces. Such a scheme cannot handle
expressions which reduce to products of two or more traces without intercontracted
indices; each factor would have to be evaluated separately in that case. Since
y5 = yO?/ly2% = Y3Y2ylYO 3 a y5 may be inserted anywhere in S or s’ without
altering anything.

In the input, the trace operator “tr” is symbolized by the string ‘##‘; to make
sense syntactically, the operator ‘##’ should occur alone as a factor at parenthesis
level zero. Its use is obligatory only in the case of products of traces, since the
occurrence of noncommuting factors in a monomial implies that a trace is to be
taken; in fact, even terms containing only commuting factors are multiplied by
tr(1) = 4. Similarly, gamma matrices with explicit indices which will be contracted
either by CHISHOLM or GMU should occur alone in their respective factors,
since a factor like (a + y,) would lead to nonsense. The analysis of a monomial
from PROCESS proceeds in several steps in CHISHOLM. First the intercontracted
indices are identified and the traces rotated to normal form (y,S) in the array Y.
Index pairs which occur within the traces in Y are marked in PAIR, so that an
unpaired index will be searched for in the remaining traces in QNUM. If the second
member of a pair is not found, an error results. The initial trace in Y (for J = 1)
may be entered rather clumsily; duplication of some of the ALGOL would make
this step more efficient. Then 2c-1 simple traces are generated, with a zero or one
bit in the appropriate binary place of REV determining whether the sequence S
or its reverse R is used to build up the trace. Finally, multiple y5’s are consolidated
in a step which could be eliminated by a nonlocal Boolean variable set in PROCESS
when none of the factor traces contains a y5 .

procedure CHISHOLM(N,C); value N, C; integer N, C;

ALGORITHMS FOR DIRAC ALGEBRA

egin array SCRATCH[O:N], Y[O:N]; real MU;
de23 ray PAZR[O:N]; integer array UB[O:C];
eger , Z, J, K, L, U, Z, Xi?, P, POW, REV;

for K := 1 step 1 until N do PAZR[K] := false;
J := I; I := L := LZM[O,J]; u := LZM[l,J]; UB[O] := JZ := z := 0,

: for K : = Z step 1 anti1 U, L step 1 until Z- 1
in Z : = Z+ 1; Y[Z] : = QNUM[K] end;
:= Jz+l; UB[JZ] := z; EZM[O,J] := -LIM[O,J];

ifJZ < CthenbeginZ:= 1;
A: for K := Z while Y[K] > 4) car PAZR[K]

h=K:=Z+l step 1 untiil UdoifMU
egin PAZR[Z] := PAZR[K] := tru

ifJ= 1 andlfl thenbeginJZ:=Z:
for K := 1 step 1 until U ds PAZR[

for 9 := 2 step 1 untili C do begin L := L [OJ]; u := L~~~l?J]~
if 0 < L then for P : = L step 1 until

if QNUM[Z] = MU then go to B end;
outstring(2,‘error:unpaired index’); C := 0 e

P := lq(C--1); Y[O] := Px QNUM[O];

for REV : = P- I step - 1 untiE 0 do begin U : =
fsrZ:=O,2step luntil UdobeginZ:=Z+I,
for J:= 2 step 1 until Cdo begiRL. := &2; U:=

v nlod (2 x PO W))LP
I:= Ustep --E uuti 2 := z+1; QNUM[Z] := Y[Z] e

K := 8; for Q := It-1 step 1 until Z
begin K:= KS-I; SCRA

Z := K; for K := 1 step 1 until Z do QNUM[K] := SCRA~C~~K~ ea
end J9
65 := ODD := false; I:= 0;
for K : = I step I until Z do if QNUM[K] = 5 then GS := not C.j

egin I:= Z+l; QNUM[ZJ := ~~~~~KJ~
if G5 then ODD := not ODD end;

if ODD then QNlJIM[O] := -QNUM[O];
ifG5thenbeginZ:=Z+1;QNUM[Zl:=5e
G&W(Z); end REV;

182 SWANSON

At this stage we have only single traces. The procedure GMU eliminates any
contracted indices by reduction formulas due to Caianiello and Fubini [14]. Let
S and R be products of an odd number of gamma matrices as defined above; then
within a (perhaps larger) product,

(..a yuSy, a..) = -2(... R . ..).

From this result and the basic anticommutation relation, an even string (Sb)
between contracted gamma matrices reduces to two terms:

(... yJbu a..) = 2(... bs . ..) + 2(... Rb . ..).

a variant of this case is treated separately by GMU:

-**-. YCLYU .*. = . ..(4)

The reduction proceeds by rewriting the trace in S[J, Q:C], eliminating pairs of
contracted indices until an even intermediate string forces J := J + 1 or until all
indices (identifying integer negative) are gone. The simple traces are sent to
GAMMA 5 which will call PERMUTE directly if no yB is present.

procedure GMU(M); value M; integer M; begin
array S[O:M+2,O:M]; integer array R[O:M], N[O:Mf2];
integer C, I, J, K, L, U, MU; Boolean LFTOVR;
for I := 0 step 1 until M do S[O,I] := QNUM[I];
J : = 0; LFTO VR := false; N[O] := M; go to A;

MOREMU:L:=I;U:=L+l;K:=O;
for I := U while MU # S[J,I] do begin U := U+ 1;

if C < U then begin comment index is unpaired, make it a vector;
S[J,L] := -MU; go to A end;

K := K+ 1; R[K] := S[J,I]; end;
for I := U+ 1 step 1 until C do S[J+ 1 ,I-21 : = S[J,I--21 : = S[J,I];
LFTOVR := (Kmod 2 = Oj and K+ 0; N[J] := C := C-2;
if LFTO VR then begin S[J+ 1 ,O] : = S[J,O] : = 2 x S[J,O];

S[J+l,U--21 := S[J,L] := R[K]; J :=== J+l; N[J] := C;
for I := 1 step 1 until K- 1 do S[J,U-I-21 := R[Ij; end

else if K = 0 then S[J,O] : = 4 x S[J,O]
else begin S[J,O] : = -2 x S[J,O];

for I:= 1 step 1 until K do S[J,U-I-l] := R[I] end;

A: C:=N[J];forI:=OstepluntilCdo
begin QNUM[I] := MU := S[J+l,I] := S[J,J,rJ;

if MU < 0 and I+ 0 then go to MOREMU end; GAMMAS(C);

ALGORITHMS FOR DIRAC ALGEBRA 163

if L6;TO VR then begin for I : = 0 step 1 until C
GAMMAS(C); J := J-2 e

else J := J-l;
if - 1 < J tben go to A eud GMU;

Traces without contracted indices fall into two classes, depending On

tbey contain an even or odd number of y5’s. In PROCESS and
~~~~~~~~ any y5 present is anticommuted to one end of the trace; the reader is 

inded that minor modifications are needed if his metric is such that &9 f 1. 
us an even number of y5’s is equivalent to no y5 in the trace. Such traces are 

reduced to vector dot products by the standard recursion relation 

which is derived from the basic anticomm~tat~o~ relation 
(the trace is zero if n is odd). The number of terms generated 
becomes prohibitive from a temporal standpoint if y1 is much greater than 12. For 
long traces, tricks such as scanning for adjacent equal vectors (since aa = a . a) 
should be used before generating the dot products. The recursive generation of 
this reduction by actual anti-commutation in LISP[$] is better able to take advan- 

tage of identical vectors in a trace, although the process c be profligate in its use 
of storage. From a practical standpoint it may be more e ent to evaluate traces 
above a certain size numerically rather than to compute an algebraic result. 

The procedure PERMUTE reduces an N factor trace in ~~U~[~ :iV] to terms 
containing N/2 vector dot products. STORE considers pairs of adjacent vector 
identifiers in QNUM to constitute dot products. 

rocedure PERMUTE(N); value N; integer N; 
integer array POS[O:N]; integer C, I, L, T; 
for L := 3 step 2 until N do POS[L] := L; 

P: E(N); QNUM[O] := -QNUM[O]; 
= 3 step 2 until N do begin 6: := POS[L]; T := Q~UM~L]; 

rI:=Estep--1untiI2doQN 
NUM[C] := r; POS[L] := L; e 

] : = QNUM[C- 1-j; 
QNUM[C-1] := T; POS[L] := C-1; 
go to P end end end PERMUTE; 

A trace containing an odd number of y5’s is transformed into one 
y5 (symbolized by the integer 5) as its last fa&or in QAJUM[MJ T 



184 SWANSON 

product ysala, *a* a, can be derived from the reduction formula above by finding 
four orthogonal vectors such that y6 = abed, for example a = yO, b = yl, 
c = y2, and d = y3 ; recall that n must be even and 34 for a non-zero trace. The 
result is a sum over terms containing a determinant and a trace of n-4 gamma 
matrices without a yS : 

tr(ysala2 *** an) = C (-1)” (ai, aj , a, , at) tr{a, .a. ai+ai+, *.a a,}. 
nC4 

The sum is over all combinations of 4 elements (@Z) from a, *a* a, and the sequence 
of factors in the trace is the original one except that ai, ai, a, and a6 have been 
deleted. The symbol (ai , aj , a, , a$) stands for the determinant of the 4 x 4 matrix 

and p = i+j+k+l, giving us the parity of the permutation (i 5 i f: 1:: E). This 
algorithm is not optimal since the result includes invariant sums which are identi- 
cally zero; anyone with interest in this type of trace should investigate alternatives. 
For example, in the 15 terms of tr(y,qrstuv), the five term sum 

may be shown to be zero by anticommuting q through the trace. 
In the procedure GAMMAS, the four true elements of the array DET denote the 

current combination chosen from the N elements of G. The vectors in the deter- 
minant are sorted into increasing order on their internal integer representation and 
packed into the single word CNUM[30]. Both the determination of the parity of 
the permutation and the selection of the next combination are somewhat clumsy 
from the point of view of machine language programming. 

procedure GAMMAS(M); value M; integer M; begin 
array G[O:M]; integer array X[O:3], D[1:4]; 
Booleau array DET[O:M]; Boolean KEEP, SORT, EVEN; 
integer I, J, K, N, T, U, 

if M mod 2 = 0 then PERMUTE(M) 
else if QNlJM[M] = 5 and M > 5 then begin N : = M- 1; 

for I:= 0 step 1 until Ndo 
begin DET[I] := I < 4; GII] := QNlJM[Il end; 

for I := 0 step 1 until 3 do X[I] := 4-I; 



ALGORITHMS FOR DIRAC ALGEBRA 185 

CYCLE: K := J := 0; for I := 1 step 1 until N 
then begin J : = J+ 1; 
else begin K : = K+ 1; 

KEEP := SORT := EVEN := true; 
$0~ P := 4, I _ 1 while SORT and KEEP do begin SORT := false; 

for J := 2 step 1 until I do begin T := D[J]; U := D[J--I]; 
if T = I/ then KEEP : = false 
else if T < U then 

begin D[J] := U; D[J--11 := r; 
SORT := true; EVEN := not EVEYl end; 

if KEEP then begin comment: pack the vectors in the determinant 
into a single word; CNUM[30] := 054]+64xjDE3]+64~~~~~]+64xL)lla)); 
if ~~[O]~~~l]+X~2]+~[3])~od 2 = 1 then EVEN := 
if EVEN then QNUM[O] := G[O] else ~N~~~~~ := --G[O]; 
PERMUTE(N--4); end; 

1 until 3 do if X[I] < (N-I) then be 
ep - 1 until 0 do begin DET[X[J]] : 
en X[J] : = X[J] + 1 else X[JJl : = X[J+ 1]+ 1; 

DETiX[J]] := true end; go to CYCLE end; 

STORAGE AND C~JT~UT 

With all the traces involving the noncommuting quantities of Dirac algebra now 
reduced to sums of terms, each of which is a product of ordinary ~emmuting factors, 
we face the problem of accumulating the individual terms and combi 
numerical coefficients of terms with equal algebraic factors. The two met 
mass storage which will be discussed in detail are variants of table look-up 
where the terms are added sequentially to a large array but ordered accord 
their internal structure by an auxiliary array whose elements point to terms in the 
large array. It is much easier to rewrite a small array of single word pointers than 
to shuffle multiple word terms to indicate a new ordering. In the t&t scheme, the 
auxiliary array gives a ranked list of the terms in the large array, but must be 

artly rewritten to insert a new pointer each time a different term is ~e~erate~~ 
owever, the position of any term in the list can be quickly found by a binary 
arch of the list, requiring only log,N term comparisons for N terms. A second 

method uses a so-called “tree” to provide the ordering information. The tree is a 
inked list with nodes and branches which can be read in such a manner to in 



186 SWANSON 

the serial order of the terms in the large array. To add a new term, a tree is 
expanded rather than rewritten; but it will, on the average, require a few more 
comparisons per term than the binary search because the details of its structure 
depend on the specific problem. 

We have spoken of ordering algebraic terms as though they were numbers rather 
than symbolic information. This is possible, nonetheless, because within the com- 
puter each algebraic factor is represented by a bit pattern which can be inteqreted 
as an integer. An n-factor term is analogous to an n-letter word, where our 
“alphabet” is the collection of small integers which represent possible factors. The 
problem of ordering terms is precisely that of alphabetizing words; but because 
multiplication is commutative at this level, only the letters occurring within a 
word are significant, not their sequence. To avoid ambiguity, a canonical order for 
the factors within a term is prescribed by ordering them according to their numerical 
representation. Factors with a small internal representation appear to the left in 
a term and change less frequently in the output listing. Thus to group terms accord- 
ing to specific common factors, it is necessary to be able to specify the internal 
representation which corresponds to an external print-name for an identifier; such 
a change is relatively minor. 

The procedure STORE does two jobs: it transforms the current term into its 
canonical representation and then searches for an identical term among those 
previously generated. Explicitly, each term has a numerical coefficient in QNUM[O], 
algebraic constants in CNUM[l:CNUM[O]], a determinant in CNUM[30] (when 
this word is not zero), and N/2 vector dot products in QNUM[l:N]. Since the 
integers which represent the algebraic factors are small compared to the computer 
word size, an optimized program would pack several of these factors into a single 
word because efficient use of storage is necessary at this stage. However, packing 
and unpacking operations are awkward and unilluminating when expressed in 
ALGOL; we have simply used eight words of mass storage for each term, containing 
a coefficient and up to seven algebraic factors. To facilitate printout, the algebraic 
factors have been standardized at a four character length, with spaces being added 
to constants and dot products. To save storage space, such editing would normally 
be done by the output routine. A dot product containing the vectors A and B can 
be equivalently expressed as A-B or B-A; to avoid ambiguity in the comparison of 
terms, we choose the ordering which results in the lowest value for the two character 
internal representation: i.e., 64 x ‘A’+‘B’. The use of two characters (12 bits in 
this case) to represent dot products and constants (when the dummy space is 
counted) is itself inefficient, since there are rarely more than ten or so vectors in a 
problem. Instead of manufacturing the dot product identifier from the integers 
representing the vectors, new constants corresponding to the dot products could be 
generated by the program (or assigned by the user who wishes to control sorting 
order); temporal efficiency would be maintained by finding the appropriate 



ALGORITHMS FOR DIRAC ALGEBRA 187 

constant in a two dimensional table whose indices are the integers ~~~re§e~ii~g the 
vectors. The final step before comparing the current term to those ~rev~~~~~y 
generated is to order the algebraic factors in JOTby sorting them on their numerka~ 
representation. For terms with many factors, some sorting time might be saved by 
sorting the algebraic constants in PROCESS and merging them with a ssrte 
of dot products here. We also declare certain nonlocal arrays and variables which 
will be used both by STQRE and by the output statements: 

integer array TABLE[O:ZO], TREE[O:lOOO], ~~~~~~:~~]~ 
array TERM~O~2000]; integer CENSUS, 

rocedme STORE(M); value M; integer M; 
es I, J, K, N, P, Q, S, T, hi; Boolean 
t: First transform current term into can 

:= CNUM[O]; for I := I step 1 until K do 
fm I : = 2 step 2 until M do begin T : = 

U< TtbenbeginS:= T; T: 
:= K+l; JOT[K] :=== 64x(64 

JQT(K+I] :== W := CNUM[30]; if U 
step 1 until 7 do JOT[I] 

while SORT do begin K : 
forJ:=2step 1 untiIrdobeginT:=JOT~JJ!; U:== 

U then begin JOT[J] : = U, JO T[J- 11 : = , 

~~~rn~~t~ Now compare term with pre-existing ones and combine or append; 
N:= J:= BIT;

L - 0 then go to ENTER; N := N+2;
US then begin P := TABLE[J];

fm K : = 1 step 1 unti 7 do begin Q : = sign(JQT[K]
Q#ftbenbeginJ:= J+QxN;gotsLOQKen
M[P] := TERM[P]+QNUM[O]; go t

elscebe~irrJ:=J-N;P:=--1;gotcsLOOKen
: for N:= CENSUSstep --I until Jd

: = 8 x CENSUS; if Q > 0 then TABLE1
TERMED] := QNWM[O]; for K := 1 step 1 an
CENSUS : = CENSUS+ 1; if CENSUS 2

The details of this storage algorithm will be discusse below after we give Output
and initialization statements for it. All the editing of the output occurs in the
procedure UTERM which prints out individual terms so that vector dot

188 SWANSON

product A.B appears as ‘ uABu’, a constant M as ‘ uMu u’, and a determinant
(A, B, C, 0) as ‘ABCD’, corresponding to the way these quantities were stored in
STORE, PROCESS, and GAMMAS respectively. The reference string in outsym-

bol[lU] is identical to that appearing previously in insymbol, Output of terms with
zero coefficients has not been suppressed.

procedure OUTERM(P); integer P; begin
integer J, K, S, T, integer array SYMBOL[O:3];
outreal(2, TERM[P]);
for J := 1 step 1 until 7 do begin S := TERM[P+ J];

forK:=O, 1,2,3do
begin T := S+64; SYMBOL[K] := S-64x T; S := Tend;

forK:=3,2,1,Odo
outsymbol(2,‘x)+-(.0123456789u#

ABGDEFCHI.JKLMNOPQRSTUVWXYZ;‘,SYMBOL[K]) end;
erred OUTERM;
comment output for statement;
for N := 1 step 1 until CENSUS do OUTERM(TABLE[N]);
comment initialization; CENSUS := 0; BIT := 1;

The second part of STORE accumulates terms in the mass storage array TERM
serially as different algebraic products appear. The method given in STORE above
is a binary search algorithm in which the terms are ordered by pointers kept in the
indexing array TABLE; the precise function of these pointers can be understood
by examining the for statement which causes the terms to be printed out in lexico-
graphical order. Following the label LOOK, we construct an index J by a succession
of comparisons of the current term in JOT with those already in TERM and ordered
by TABLE. The index is increased or decreased each time by a successively dimi-
nishing power of two until either an identical term is found or J and Q indicate
where the pointer to the new term must be inserted in TABLE by the statements
following the label ENTER. Although a binary search affords the minimum number
of term comparisons, the time spent in rewriting TABLE can become prohibitive
when CENSUS is large. To sidestep this problem at the cost of some comparison
inefficiency, we consider a “tree” storage scheme.

A tree is an involved structure which indicates the results of successive term
comparisons in its generation; it can be interpreted to yield a lexicographical
ordering of the terms it describes. The basic component of the tree is what I shall
call a node, which consists of four words of information, The zeroth element of a
node, TREE[4n], contains a pointer to the base of the associated term. Its first and
third elements are “branches” which may eventually point to nodes one level
further into the tree which describe terms that are either smaller or greater,

ALGORITHMS FOR DIRAC ALGEBRA 289

respectively, than the term corresponding to this node; iuit~a~~y these elements are
zero. The second element, TREE[4n+2], provides a link to a
whose first or third element points to this node. A victim o alizat
node, or trunk of the tree, does not conform to the above. The AU3
generation of a tree is somewhat simpler than that for the binary sear

the readout is not. To implement this method, replace the statements
between the second comment and the label FIN by:

:= TREE[N+2+(2]; if T = 0 tlm gs to EN
N := T; S := TREE[N];
for R := B step I until 7 do begin Q := sign(jr~TIR]--~~M:S+K]);

if (2 f 0 then go to LOOK; end;
M[S] := TERM[S]+QNUM[O]; go to FIN;

ENTER: CENSUS := CENSUS+4; S := 2x CENSUS;
TREEIjCENSUS] := S; TREEfCENSUS+2] := N;

EE;n;+2+Q] := CENSUS; TERM[S] :=== QiL’UM[O];
K : = 1 step 1 until 7 do TERM[S+K] : = JOT{K];

Decoding the tree proceeds by advancing from n to node while the current
node indicates a smaller term further into the tree. en the smallest term on a
branch is found, it is printed out and the corresponding ~o~~t~r is ~~~ke~ by
setting it negative. We then ask whether that node intimates a larger term on the
next level. If so, we step to its node and repeat the scarming for smaller terms;
otherwise we retreat along the nodes until we find a term whi
printed. After printing and marking it, we search for a larger term.

reaches the zeroth node, the output is complete and the tree is initiahzed.

N := 4;
:= TREE[N+l]; if Mf 0 then begin N :-
:= TREE[N]; OUTERM(M); TREEEN] := -

[N+3] f 0 then begin N := TREE[N+3
[N] -c 0 then begin N := TREE[N+2];
tben begin 0 UTERM(2 x N); TREE1

CENSUS := 0; for N := 2, 1 step 2 until 1000 do

Since the structure of the tree depends on the o
nature of its contents, the storage of a sequence of terms already in order could
result in a tree with a single branch. To forestall this ca~a~ty, one can compute a
checksum from the factors of a term and indude it in the ~~rn~ar~so~ sequence.
Use of a checksum would also reduce the number of steps in a c
different terms with identical initial factors. Both the binary search a

190 SWANSON

methods above have employed a fixed maximum for the number of factors in a
a term and padded a term containing fewer factors with blanks. Because terms are
located by a pointer to their initial element, there is no reason why they cannot be
of arbitrary length if some indication of the number of factors is given for the
purposes of comparison and printing. As a final illustration of methods for handling
immediate access storage, we modify the tree storage method to utilize a checksum
and permit arbitrary term length. Since there are the same number of nodes and
terms and they occupy corresponding positions in TREE and TElRM respectively,
we can eliminate TREE by incorporating both the algebraic information and its
associated node into TERM. This obviates the need for the pointer in the zeroth
element of the node, which incidentally was superfluous already in the case of a
fixed length term. By recording the path taken into the tree during readout, the
back link information in the second element can be regenerated when it is needed.
The statements required in STORE are:

N := Q := 1; for J := 1 step 1 until P do Q := Q+JOT[J];
Q := Q mod 37; JOT[O] := 64x Q+P; Q := sign(2x Q-37);

LOOK: T := TERM[N+Q]; if T = 0 then go to ENTER; N : = T;
for J := 0 step 1 mM P do begin Q := sign(JOT[J]- TERM[N+2+ J]);

if Q # 0 then go to LOOK; end;
TERM[N] := TERM[N]+QNUM[O]; go to FIN;

ENTER: TERM[CENSUS] : = QNUM[O];
TERM[CENSUS+ l] := TERM[CENSUS- l] := 0;
for J := 0 step 1 until P do TERM[CENSUS+2$ J] := JOT[J];
TERM[N+Q] := CENSUS; CENSUS := CENSUS+P-+4;

The price paid for pruning the tree to half its former size is a more complicated
defoliation routine. The only part of the tree left to mark to indicate the printing
of a term is one of the pointers in a previous node corresponding to the first or
third element of the full node (one could mark a bit in the term itself, e.g., the sign
of the checksum). To be able to climb down out of the tree and to access the pointers
correctly, one must record the positions of successive nodes and indicate whether
one proceeded to a larger or smaller term in the next node. Output will be lexico-
graphically ordered only within groups of terms with the same checksum; groups
must be further merged for a simple ordering. If OUTERM is modified to print a
variable number of factors for each term, the output and initialization statements
become:

N:= l;L:=O;
A: M := TERMIN-11; if M f 0 then

begin L := L+l; NODE[L] := -N; N := M, go to A end;

ALGORITHMS FOR DIRAC ALGEBRA 1%

UTERM(N); 44 := NODELL]; TERM[abs(M+ I>] := --Ik;;
: M := TERM[N+l]; if Mf 0 then

begin L :== L+l; NODELL] := N; N := M; go to A

c: = NQDE[L]; if TERM[abs(M+l)] < 0
. N:=abs(M);L:=L--l;ifL>O

then begin 0 UTERM(N); TERM[abs(M+ l)] : = --IV;
if TER~~2~ > 0 then go to B;

CENSUS := 5; for N := 0 step 1 until 3 do TERM[N

e have dwelt upon the efficient use of a computer’s internal storage on a “first
pass” basis without considering the problem of reclaiming space from terms wiiose
numerical coefficients become zero or that of spilling parts of long expressions
onto external media such as tape or disc. Such questions can
in the context of specific implementations. It might even be in some systems a
more efficient accumulation of terms would result from red i~terme~i~t~
output of terms onto disc or tape, perhaps without any ~~~~i~~~~~~ co
and a final sort and merge operation.

AFTERWORD

A program composed of the procedures defined above will simply ~~~~~~at~ an
‘on by expanding it, reducing any traces present, and mmbining
s. One may want to impose additional conditions on the result

such as pap = ~9 and k.k = 0, or want to substitute aigebraic expressions for
dot products or constants so that the answer is in terms of a minimal set of invar-
iants. Such substitutions involve internaIIy generating new input from the output
of the first evaluation and further expansion and combination of the
sions. Large parts of the code in DISTRIBUTE, PROCESS, and ST
used for this problem which is now one of ardinary algebra. Additio~a
including portions of SCAN are needed to set up, from the input, a tab&z of equiv-
alents for algebraic constants and vector inner products which includes operator
and parenthesis level information for expressions. Nonzeso terms fmm the first
expansion are unpacked and the factors with equivalents are replaced; an

r0 cts with multiple term factors are distributed and the resulting rno~~~i~ls
Ice cumulated as before.

Once a program does more than a single task or type of rna~~~I~tio~ it is
necessary to select from among its several capabilities the function iate
to the data at hand. Is the current input a trace to reduce, equivalents late
and substitute in an existing expression, information about the desired internal
representation or algebraic type of identifiers, or possibly instructions to punch

192 SWANSON

the output? One approach, of great flexibility, is to preface data relevant to a
single task with a control word or symbol which is recognized and causes a transfer
to the appropriate segment of the program. Processing continues in this task-
segment until an end-of-task delimiter is seen, whereupon a new control word is
sought. Another approach, which recognizes the individual nature of any complex
problem, involves writing a library of procedures for single tasks or sub-tasks
which use consistent conventions for internal representation of algebraic quantities.
Those procedures appropriate to the problem are selected and a short control
program written which consists mostly of procedure calls and determines the se-
quence of operations such as input, reduction, substitution, and output. Thus one
can omit trace reduction procedures for problems involving ordinary algebra, or
include additional procedures to do tensor algebra or to manipulate external storage
media (tape, disc) in case of lengthy expressions.

Finally, I should like to pull together and extend some of my scattered remarks
on the relation between the illustrative coding given here in ALGOL and bit
pushing techniques, the more or less optimized machine language coding which can
take advantage of the idiosyncrasies of specific computers to achieve temporal or
spatial efficiency. We have been constrained by the conventions of ALGOL
implementations which generally make a full computer word the quantum of
storage which is most readily accessible within the reference language. Thus in
some places we have used full Boolean words (the arrays MULT, DET) where only
a single bit of information was needed, and in others manipulated the sign bit of
related integers (in V, QNUM, TREE) since it is virtually the only individually
accessible bit in ALGOL expressed code. Character manipulation and the opera-
tions involved in packing and unpacking information within a single word have
only been hinted at because their expression in ALGOL is cumbersome at best.
Indeed, the ultimate choice of the maximum internal representation of algebraic
quantities (and hence the maximum number of different quantities) will probably be
related to the character size on a specific computer and to the types of partial word
operations available. There are compromises to be made in the construction of a
program which bear upon the amount and type of optimization which is attempted.
In STORE, the time taken in packing and unpacking words must be weighed
against the ease of multiple word comparisons but may, on the other hand, be
necessitated by space restrictions. When different segments of a program involve
similar operations, one must decide whether to write one procedure and call it
from several places, or to duplicate statements and save the time required for
initialization and linking. In general only the procedures and statements deep
within inner loops need to be fully optimized, while some inefficiencies can be
tolerated in input analysis and task control. Efficiency at a given job and the
versatility to do many different manipulations are usually inversely correlated, as
are the overall efficiency or complexity of a program and the time needed to develop

ALGORITHMS FOR DIRAC ALGEBRA 1%

and debug it. For small or infrequent calculations, any program which corks may
be sutficient. The intricacies of input and output editing have been sidestep
because they are tedious, machine dependent, and ~udoubted~y good practice
the would-be algebra programmer. Likewise the specification of and recovery from
error conditions has been minimally treated. We have stressed the desireabili
assignable internal representations for algebraic quantities which may
several characters in their external print-names and mention here the possible
~sef~~~ess of an output format constructed to be compatible with the Input format
so that intermediate results can be saved and manipulated further.

Some of these algorithms were originally developed in the machine language program FTRACE
171 under the supervision of C. K. Iddings. I am indebted to pa/l. 9. Levine for his version of
Kaiser’s distribution algorithm, Cultural interchange regarding algebraic rna~~~~lat~o~s on
digital computers has occurred at various times with J. Mathews, M. Veltman, 9. i%IcCarthy,
A. C. IIearn, and M. J. Levine. Support for computer time has come from many sources: the
National Science Foundation, the U.S. Atomic Energy Commission the U.S. Air Force Oflke
of Scientific Research and the Office of Naval Research

REFERENCES

1. JON MATHEWS, California Institute of Technology, private communication. (a Balgol program
for traces of up to 8 gamma matrices, and a machine language program for spin-one algebra)

2. R. M. WILCOX, A computer method for calculating Dirac traces with applications to quanmm
electrodynamics. Ph.D. thesis, University of Colorado, 1961. (will not handle ye’s easily)

3. II. 4. K.A~~ER, Trace calculation on electronic computer. Nkleav physics 43, 620 (1963).
(distribution algorithm for an arbitrary number of nested parentheses)

4. M. J. LEVINE, Neutrino processes in stars. Ph.D. thesis, California Institute of Technology,
1963. (low order perturbation theory, mostly table look-up)

5. M. J. LWTNE, Dirac matrix and tensor algebras on a computer. J”. ~~~~~~~t~o~~~ Pij)~ics
1, 454 (1967).

6. M. VELTMAN, An ISIVI 7090 program for symbolic evaluation of Feynman diagrams. Stanford
Linear Accelerator Center, unpublished manuscript, ca. 1964. (spin-one algebra)

7. S. IvI. SWANSON, “FTRACE: A FAP subroutine for Dirac gamma matrix algebra,” Institute
of Theoretical Physics, Stanford University, unpublished report ITP-120, June 1964; Addenda
and errata to ITP-120, November 1966; cf. also Stanford Linear Accelerator Center program
library, program AO40.

8. A. C. WEAICN, Computation of algebraic properties of elementary particle reactions using
a digital computer. Communications of the ACM 9, 573 (1966). (summarizes an ambitious
undertaking in general algebra and diagram manipulation written in LISP)

9. “Revised Report on the Algorithmic Language ALGOL 60,” P. Nam, editor, ~#~~~~~~ca~jo?~~
of the ACM 6, 1 (1963).

1.0, Communications of the ACM 7, 628 (1964).

194 SWANSON

11. “Burroughs B5500 Information Processing System, Extended Algol Reference Manual,”
Burroughs Corporation, Detroit, Michigan, 1964.

12. M. J. LEVINE, private communication. The present ALGOL version was translated from
an assembly language version and flow chart furnished to me by Levine.

13. J. S. R. CHISHOLM, Nuovo Cimento 30, 426 (1963).
14. E. R. CAIANIELLO and S. FUB~Q, On the algorithm of Dirac spurs. Nuovo Cimento 9, 1218

(1952). Proof of Chisholm’s reduction also follows from formula A3 of this reference.

